Experiment No:-
Aim of Experiment : Develop a prototype that performs parallel computation of the same task on different node. Finally process initiator receives the result and computation time required to complete the task on the node and displays to the user.
TITLE : WORK INSTRUCTION SHEET: Mobile Computing Lab

Tools/Libraries: 

Software Used : MS Office

Hardware Used: Standard PC

Pre Condition : Study the mobile cellular system

Post Condition: Cellular system studied.
INTRODUCTION TO SOCKETS :-

A socket is one of the most fundamental technologies of computer networking. Sockets allow applications to communicate using standard mechanisms built into network hardware and operating systems. Although network software may seem to be a relatively new "Web" phenomenon, socket technology actually has been employed for roughly two decades. Software applications that rely on the Internet and other computer networks continue to grow in popularity. Many of today's most popular software packages -- including Web browsers, ICQ, and Napster -- rely on sockets.

Point-to-Point Communication - 

In a nutshell, a socket represents a single connection between exactly two pieces of software. More than two pieces of software can communicate in client/server or distributed systems (for example, many Web browsers can simultaneously communicate with a single Web server) but multiple sockets are required to do this. Socket-based software usually runs on two separate computers on the network, but sockets can also be used to communicate locally (interprocess) on a single computer. 

Sockets are bidirectional, meaning that either side of the connection is capable of both sending and receiving data. Sometimes the one application that initiates communication is termed the client and the other application the server, but this terminology leads to confusion in non-client/server systems and should generally be avoided. 

Interface Types - 

Socket interfaces can be divided into three categories. Perhaps the most commonly-used type, the stream socket, implements "connection-oriented" semantics. Essentially, a "stream" requires that the two communicating parties first establish a socket connection, after which any data passed through that connection will be guaranteed to arrive in the same order in which it was sent. 

Datagram sockets offer "connection-less" semantics. With datagrams, connections are implicit rather than explicit as with streams. Either party simply sends datagrams as needed and waits for the other to respond; messages can be lost in transmission or received out of order, but it is the application's responsibility and not the socket's to deal with these problems. Implementing datagram sockets can give some applications a performance boost and additional flexibility compared to using stream sockets, justifying their use in some situations. 

The third type of socket -- the so-called raw socket -- bypasses the library's built-in support for standard protocols like TCP and UDP. Raw sockets are used for custom low-level protocol development. 

Addresses and Ports - 

Today, sockets are typically used in conjunction with the Internet protocols -- Internet Protocol, Transmission Control Protocol, and User Datagram Protocol (UDP). Libraries implementing sockets for Internet Protocol use TCP for streams, UDP for datagrams, and IP itself for raw sockets. 

To communicate over the Internet, IP socket libraries use the IP address to identify specific computers. Many parts of the Internet work with naming services, so that the users and socket programmers can work with computers by name (e.g., "thiscomputer.compnetworking.about.com") instead of by address (e.g., 208.185.127.40). Stream and datagram sockets also use IP port numbers to distinguish multiple applications from each other. For example, Web browsers on the Internet know to use port 80 as the default for socket communications with Web servers. 

IMPLEMENTATION :- 

client program :-

import java.net.*;

import java.io.*;

importjava.util.Date;

public class system

{

public static void main(String[ ] args)

 {

  String host="127.0.0.1";

try

  {

System.out.println("Client Started *****");

    Socket theSocket=new Socket(host,90);

System.out.println(" Connection made with Server");

try

   {

       Thread output=new OutputThread(theSocket.getOutputStream());

output.start( );

        Thread input= new InputThread(theSocket.getInputStream());

input.start( );

try

         {

output.join( );

input.join( );

         }

catch (Exception ex)

          {        }

   }

catch (IOException ex)

    {      }

System.out.println("Client disconnecting ");

theSocket.close( );

 }

catch(Exception ex)

  { }

 }

}

classInputThread extends Thread

{

InputStream in;

public Input(InputStream in)

 {

   this.in=in;

 }

public void run( ) 

 {

StringBufferstr= new StringBuffer();

int i=0;

try

   {

int c;

while((c=in.read( ))!=-1)

     {

str.append((char) c);

     }

     Date d1=new Date();

for(i=0;i<=1000;i++)

{

System.out.println("it is "+str);

   }

Date d2=new Date();

Ext=d2-d1;

System.out.println(“the excecutiontime”+Ext);

}

catch (IOException ex)

    {  }

 }

}

classOutputThread extends Thread

{

OutputStream out;

publicOutputThread(OutputStream out)

  {

this.out=out;

  }

public void run( ) 

  {

try

     {

       String str1="86898";

        bytebuf[ ]= str1.getBytes( );

System.out.println("Sending Response to Server");

out.write(buf);

out.flush( );

     }

catch(IOException ex)

     {  } 

 }  }

Server program :- 

import java.net.*;

import java.io.*;

importjava.util.*;

public class serverr

{

public static void main (String[ ] args)

 { 

try

   {

InputStream in=new FileInputStream(args[0]);

ByteArrayOutputStream out=new ByteArrayOutputStream( );

int b;

while((b=in.read( ))!=-1) out.write(b); 

byte[ ] data= out.toByteArray( );

int port=90;

ServerSocket server=new ServerSocket(port);

System.out.println("Accepting connection on port"+server.getLocalPort( ));


System.out.println("Data to be sent ");



       String encoding="ASCII";

while(true)

        {

            Socket connection=null;

connection=server.accept( ); 

try

          {

System.out.println("new connection found");

            Thread output= new OutputThread(connection.getOutputStream( ),     

data,encoding);

output.start( );

               Thread input=new Thread(connection.getInputStream());

input.start( );

try

          {

output.join( );

input.join( );

           }

catch (InterruptedException ex)

            {        }

          }

catch (IOException ex)

           {      }

finally{

if(connection!=null)

connection.close( );

            }

       }

      }

catch (IOException ex)

      {      }

 }

}

classInputThread extends Thread

{

InputStream in;

publicInputThread(InputStream in)

 {

  this.in=in;

 }

public void run( )

{

StringBufferstr = new StringBuffer( );

int i=0;

try

   {

int c;

while((c=in.read( ))!=1)

    {

      c=in.read( );

System.out.println("it is   "+((char) c));

str.append((char) c);

   }

System.out.println("it is "+str);

 }

catch (IOException ex)

     {  }

try

  {

in.close( );

  }

catch (IOException ex)

    {      }

 }

}

classOutputThread extends Thread

{

private byte[ ] content;

private byte[ ] header;

privateint port=80;

OutputStream out;

publicOutputThread(OutputStreamout,byte[ ] data,String encoding)

throwsUnsupportedEncodingException

   {

this.out=out;

this.content=data;

    }

public void run( )

  {

try

   {

out.write(this.content);

out.flush( );

           }

catch(IOException ex)

           {

             }

try{

out.close( );

  }

catch (IOException ex)

    {      }

 }  }

EXPLANATION 
Some packages terms and functions related to program coding are explained below:-

· PACKAGES :-
->.net.* - Our program is basically based on client server approach, so networking must be there. this package is used for networking in java.

->.io.* - Program includes some intact input and output between client and server. so this package includes files related to input and output.

-> .util.* - This package includes  date function and in this program execution time has to be calculated so this package is used in this program.

· FUNCTIONS :-

Client program :-

->socket(host,portno) – This function is used to establish connection with the host machine at the given port number.

->join( ) - This function is used to join the input and output of a particular thread.  

->run( ) - This program runs automatically, it includes output class of client program and responsible for transferring data from thread to buffer.

->start( ) - This function is used to start transfer of data in the stream and out of stream. 

->getBytes( ) - This function stores the data in the buffer byte by byte.

Server program :-

->serversocket(port) – The port number is same as that in client program. This function is used to establish connection with the client.

->getLocalPort( ) - This function is used to listen client's request, if there is any request it will accept that and print a message “Accepting connection on port”.

->Accept – This is responsible for actual connection with the client.

->read( ) - This function is used to read the data from the buffer that is being provided by the client.

->write( ) - This function is used to write the data to the buffer that is being provided by server.

· TERMS :-

-> Port – It is a communication bridge between client and server.

->Threads – They are used to perform multitasking. By using threads we can run multiple clients simultaneously.

-> Buffer – It is a temporary storage which is used to store data before actual transmission over the port.

39

